Synthesis and Optimization of Synchronous Logic Circuits

نویسندگان

  • Maurizio Damiani
  • Giovanni De Micheli
  • David L. Dill
چکیده

The design automation of complex digital circuits offers important benefits. It allows the designer to reduce design time and errors, to explore more thoroughly the design space, and to cope effectively with an ever-increasing project complexity. This dissertation presents new algorithms for the logic optimization of combinational and synchronous digital circuits. These algorithms rely on a common paradigm. Namely, global optimization is achieved by the iterative local optimization of small subcircuits. The dissertation first explores the combinational case. Chapter 2 presents algorithms for the optimization of subnetworks consisting of a single-output subcircuit. The design space for this subcircuit is described implicitly by a Boolean function, a so-called don’t care function. Efficient methods for extracting this function are presented. Chapter 3 is devoted to a novel method for the optimization of multiple-output subcircuits. There, we introduce the notion of compatible gates. Compatible gates represent subsets of gates whose optimization is particularly simple. The other three chapters are devoted to the optimization of synchronous circuits. Following the lines of the combinational case, we attempt the optimization of the gate-level (rather than the state diagram -level) representation. In Chapter 4 we focus on extending combinational techniques to the sequential case. In particular, we present algorithms for finding a synchronous don’t care function that can be used in the optimization process. Unlike the combinational case, however, this approach is exact only for pipeline-like circuits. Exact approaches for general, acyclic circuits are presented in Chapter 5. There, we introduce the notion of synchronous recurrence equation. Eventually, Chapter 6 presents methods for handling feedback interconnection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

Area-Efficient Design of Asynchronous Circuits Based on Balsa Framework for Synchronous FPGAs

This paper presents an efficient asynchronous design methodology for synchronous FPGAs. The mixed synchronous/asynchronous design is the best way to minimize the power consumption of a circuit implemented on a synchronous FPGA. For asynchronous circuit synthesis, Balsa was proposed. However, the problem is that circuits synthesized from Balsa description need a lot of logic resources. To solve ...

متن کامل

High-Level Synthesis from the Synchronous Language Esterel

Producing efficient circuits from high-level language descriptions remains a problem. This paper proposes three techniques for improving the quality of circuits generated from high-level Esterel specifications, a synchronous, concurrent language designed to specify control-dominated systems. Together, the three techniques aim to improve the quality of the input to logic synthesis to produce bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992